The University of Massachusetts Amherst

Search Results - ryan%2520hayward

8 Results Sort By:
Rapid Neural Network-based Autofocus Control for High-precision Imaging Systems

As industry 4.0 pushes the limits of micro and nano-scale technologies, semiconductor, GPU, and robotics manufacturers are searching for ways to optimize their production lines while still maintaining the highest level of quality. Visual inspection of these advanced micro and nano-scale technologies requires remarkably high levels of precision and control. The piezoelectric actuators used for metrology are currently burdened by non-linearities that require slow and expensive internal closed-loop controllers to deliver sufficient precision to the imaging system. A UMass Amherst research team has developed a new control method that reduces the cost and complexity of high-precision imaging systems while still delivering rapid acquisition of clear and crisp images. The new method integrates the focus measurement and the troublesome non-linear effects in a single learning-based model. The method involves evaluating the focus from a short sequence of images in a deep learning-based control model to determine the optimal position for the lens. The technology leverages Long Short-Term Memory (LSTM) because of its superior ability to draw inferences from learned time sequence data. This novel method also utilizes an optimized backpropagation algorithm for efficiency, as well as a unique S-curve control input profile to minimize motor and image jerks. This method supports both rapid and stable dynamic lens transitions for a wide variety of imaging applications. Compared with the leading autofocus technologies, this method demonstrates significant advantages regarding autofocus time.  

Published: 11/2/2022   |   Inventor(s): Xian Du, Peter DiMeo, Jingyang Yan
Category(s): Engineering, Physical Science, Software & information technology
Demineralized Bone Paper and Applications Thereof
This invention provides structurally well-defined, three-dimensional bone tissue grafts produced from stacked demineralized bone paper (DBP), methods for treating a subject using such bone tissue grafts, methods for making DBP, and in vitro assay systems and methods for assaying the effect of an agent on bone development or health.
Published: 8/10/2023   |   Inventor(s): Jungwoo Lee, Jae-Hyuck Shim, Ryan Carpenter, Yongkuk Park, Jun-Goo Kwak
Category(s): Biotechnology, Devices, Healthcare, Life Sciences, Research tools, Therapeutics & prevention
Polymeric Nanoparticle-Based Antibiofilm Therapy
This invention provides a novel therapeutic platform to combat multidrug-resistant bacterial and biofilm infections using engineered polymeric nanoparticles. The polymeric nanoparticles can penetrate and eradicate pre-formed bacterial biofilms while maintaining high therapeutic indices. The nanoparticles are formed via self-assembly of engineered synthetic polymers in aqueous solutions, without the need to use any organic solvent or purification procedures.
Published: 8/10/2023   |   Inventor(s): Vincent Rotello, Ryan Landis, Akash Gupta
Category(s): Healthcare, Life Sciences, Biotechnology, Therapeutics & prevention
More efficient, low energy manufacturing method for 2D Zeolites
Zeolites have found wide application in catalysis and separation processes due to their tunable pore structure and active sites, and they show remarkable stability in commercial use. Recently, ultra-thin two-dimensional (2D) zeolite nanosheets have been synthesized from zeolite precursors. These ultra-thin nanosheets show promise for high throughput separations and catalytic reactions involving bulky molecules. A commercially feasible synthesis method, however, has yet to be developed. State-of-the-art methods require high energy input and multiple processing steps, and give low yield and small nanosheet size.

 

Professors Winter and Fan have developed a simpler, lower energy method to synthesize ultra-thin 2D zeolite nanosheets from precursor zeolite materials, such as MCM-22 and ml-MFI. In the method, zeolite precusors can be subjected to either a short sonication or chaotic flow treatment in the presence of commercially available telechelic polymers, resulting in exfoliated zeolite nanosheets. While demonstrated in batch, this process can potentially be scaled and made continuous.

Published: 6/26/2023   |   Inventor(s): H Winter, Wei Fan, Vijesh Tanna, Sanket Sabnis
Category(s): Chemicals, Engineering
Polymeric Nanocapsules for the Treatment of Biofilms
Bacterial biofilms are widely associated with persistent infections. The amphiphilic construct of biofilms provides protection for bacterial cells by reducing absorption of conventional antimicrobials. This invention provides new antimicrobial nanocapsules that can effectively inhibit and eradiate pathogenic biofilms. The nanocapsules contain an antimicrobial essential oil and can efficiently deliver the essential oil to the cells of pathogenic bacteria in the biofilm, resulting in effective killing of the bacteria.
Published: 8/10/2023   |   Inventor(s): Vincent Rotello, Ryan Landis, Akash Gupta, Yiwei Lee
Category(s): Biotechnology, Healthcare, Life Sciences, Nanotechnology, Therapeutics & prevention
COLORIMETRIC RADIATION SENSORS
Researchers at UMass Amherst have developed sensors for detection of ionizing radiation (e.g. X-ray, gamma ray, and electron beam radiation) based on polymer multilayer films. A radiation sensor includes a substrate and a polymer multilayer film including alternating layers of a high refractive index polymer and a low refractive index polymer that give rise to reflected structural color in the visible region of the spectrum. The high refractive index polymer and the low refractive index polymer each comprise repeat units derived from a photo-crosslinkable monomer. A variety of rigid and flexible substrates can be used to fabricate sensors (for example, Figure 1 shows a multilayer polymer fabricated on a Mylar sheet), and polymer multilayer films can be designed to undergo either a blue or red shift (see Figure 2) in response to ionizing radiation. The radiation sensors are useful in preparing various articles, including wearable patches, packaging materials, labels, and window panes.
Published: 1/18/2022   |   Inventor(s): Ryan Hayward, Maria Chiappelli
Category(s): Healthcare, Devices & sensors, Material science
Enhanced Charge Transport Through Nanoconfinement
A team of accomplished researchers at the University of Massachusetts Amherst has discovered a novel pathway for enhancing anhydrous proton transport in polymeric materials. This pathway entails generating supramolecular nanoscale confinement in polymers containing anhydrous proton transport functionalities. By carefully designing the polymer structures, the proton transport moieties of the polymers can be confined and organized within the nanoscale domains of the polymers via self-assembly, resulting in enhanced proton transport capabilities. This enhancement improves the conductivity of the polymers by 2-3 orders of magnitude. The high conductivities observed for the polymers with nanoconfinements are correlated with their ability to form locally high concentrations of proton transport moieties. These polymers allow high conductivities at high temperatures, which can increase fuel cell efficiency, lower cost, simplify heat management, and provide better tolerance of the fuel cell catalysts against poisoning.
Published: 8/3/2023   |   Inventor(s): Sankaran Thayumanavan, Mark Thomas Tuominen, Ryan Hayward
Category(s): Material science, Nanotechnology, Physical Science, Devices, Clean Energy
TUNABLE SURFACE WRINKLES FOR SMART ADHESION
This invention provides a novel, reusable adhesive surface with a well-defined surface wrinkle pattern as well as a facile, scalable and economical method to directly fabricate a patterned adhesive using a bottom-up approach. The patterning process involves swelling a laterally confined polymer film to develop surface wrinkles and photopolymerizing the swelling agent to stabilize the wrinkles. The control of adhesion is determined by the wavelength of the surface wrinkles, which is directly proportional to the thickness of the polymer film. Various processing parameters such as the film thickness, the polymer or swelling agent material, and the degree of lateral confinement can be adjusted to tune and control adhesion to produce truly "smart" adhesives for a variety of commercial applications.
Published: 8/3/2023   |   Inventor(s): Alfred Crosby, Edwin Chan, Ryan Hayward
Category(s): Material science, Engineering, Physical Science