The University of Massachusetts Amherst

Search Results - pan+hu

3 Results Sort By:
WearID: RFID Wristband Reader
Advances in RFID technology are opening up a myriad of commercial applications related to identifying and interacting with objects, from home automation and health and wellness to augmented reality and tele-rehabilitation. Passive UHF RFID readers are a particularly attractive option due to their low cost and no maintenance; however, their limited range necessitates the use of many readers to cover a single large room, an expensive and labor-intensive process.

This invention, known as WearID, overcomes the traditional limitations of UHF RFID readers through end-to-end design innovation, optimizing the wearable reader for low power, form-factor, and performance. WearID is able to detect grasping, releasing, touching, and passing near tagged objects.

Published: 6/26/2023   |   Inventor(s): Deepak Ganesan, Pan Hu, Jeremy Gummeson, Ali Kiaghadi
Category(s): Devices & sensors, Communications & internet, Electronics, Engineering, Software & information technology, Healthcare
Novel Systems for Improved Backscatter Tag Communications
A new fully asymmetric backscatter communication, which allows for battery-less sensors and readers, protocol where nodes blindly transmit data as and when they sense. This model enables fully flexible node designs, from extraordinarily power efficient backscatter radios that consume barely a few micro-watts to high-throughput radios that can stream at hundreds of Kbps while consuming a paltry tens of micro-watts.

Published: 6/26/2023   |   Inventor(s): Deepak Ganesan, Pan Hu, Pengyu Zhang
Category(s): Communications & internet, Devices & sensors, Electronics, Engineering, Software & information technology
Braidio - Prolonged Battery Life Through Assymetric Transceivers
Traditionally in data exchange among devices, all devices equally share the energy burden incurred in signal transmission and reception, limiting you to the device with the smallest energy capacity. This invention was developed to address this asymmetric available energy mobile devices encounter, allowing one to shift the energy burden to the highest capacity device, allowing more data to be exchanged before recharging.  Braidio is able to dynamically switch the transmission carrier between transmitter and receiver and increases the number of bit exchanges between a transmitter and receiver by more than two orders of magnitude over Bluetooth, particularly in highly asymmetric scenarios. Braidio operates like a standard Bluetooth radio when a device has sufficient energy, but operates like RFID when energy is low, off-loading energy use to a device with a larger battery when needed.

 

This invention can extend battery life of the smaller device hundreds of times in some cases. Braidio capability can enable power-proportional wireless communication wherein two devices with different battery capacities can multiples between the different carrier modes, making it practical for a range of mobile devices from laptop to smart watch.

Published: 6/26/2023   |   Inventor(s): Deepak Ganesan, Pan Hu
Category(s): Communications & internet, Devices & sensors, Electronics, Engineering, Software & information technology