University of Massachusetts Amherst

Search Google Appliance

Search Results - jessica schiffman

2 Results Sort By:
Chemically Stable Fibers Electrospun from Polyelectrolytes
The invention is a new platform for fabricating nano- and macro- scale fiber materials and for encapsulation. Complex coacervates are associative complexes of positive and negative polyelectrolytes, which form complexes due to a combination of electrostatic and entropic interactions between the oppositely charged polyions. Due to their aqueous solubility, polyelectrolyte solutions are a good medium for encapsulating small molecules. However, while the concept of polyelectrolyte complexes for a drug delivery system and other applications has seen heightened interest in recent years, significant obstacles and challenges remain both in processing technologies and functionalities of the resulting materials.

 

Electrospinning is an established, versatile, inexpensive and scalable process for creating continuous, nanofibrous mats of non-woven nano-/micro-scale diameter fibers. Electrospun mats hold great promise in biomedical, environmental, and industrial fields.

 

The invention provides novel polymer nanofiber or microfiber mats and methods for their preparation via an aqueous, one-step polyelectrolyte complexation and electrospinning of complex coacervates. The process involves an aqueous medium and no organic solvents and/or strongly acidic or basic condition, resulting in chemically and thermally robust fiber mats. Thus, this process and the resulting materials have tremendous potential as a green processing strategy that can serve as the basis for developing a new class environmentally benign fiber scaffolds for use in applications, such as wound healing, water remediation, catalysis, and food packaging.

 

Published: 8/11/2017   |   Inventor(s): Jessica Schiffman, Sarah Perry, Xiangxi Meng
Category(s): Material science, Healthcare, Engineering
Natural-Polymer Nanofiber Mats with Enhanced Antimicrobial Properties
This technology features flexible and porous nanofiber mats that deliver “green” active agents. The current antibacterial fibers are composed of a natural polymer derived from crab shells and a cinnamon extract. These materials can conform to any surface and are desirable in biomedical, environmental, and industrial applications. UMass Amherst researchers utilize the electrospinning process to generate novel non-woven chitosan- poly(ethylene oxide) nanofiber mats that deliver active agents. In the first instance, cinnamaldehyde, a non-toxic, antimicrobial, and anticorrosive agent derived from cinnamon bark has been attached to chitosan. Chitosan, an abundant biopolymer found primarily in crustascean shells provides hypoallergenic, antimicrobial, and hemostatic properties. The U.S. and Europe has already approved of chitosan for use in commercial bandages. Materials composed of chitosan-cinnamaldehyde conjugates have already been proven effective against the gram negative bacteria, Escherichi coli and Pseudomonas aeruginosa. These promising results suggest these nanofibers may have utility in wound care products and other flexible materials for biomedical applications. Moreover, this platform technology can be employed to generate materials with a range of antimicrobial or other beneficial properties by conjugating other essential oils (e.g. vanillin, thymol, eugenol) or small molecules (e.g. sugars, fragrances, vitamins).
Published: 11/4/2014   |   Inventor(s): Jessica Schiffman, Katrina Rieger
Category(s): Food technology & plant science, Therapeutics & prevention