Improved Wind Turbine
A longstanding source of major inefficiency in a wind farm is wake effects from upstream turbines, which can slow down wind entering downstream turbines. To mitigate this problem, tethered kites placed between turbine rows in a wind farm have been proposed. These kites mix this slower air with faster air from higher up in the atmosphere to increase the speed of wind entering downstream turbines. However, because the kites are tethered to the ground separately from the turbines, they randomly mix air in the wind farm depending on the direction the wind is blowing. For this reason, they can’t be equally efficient for all wind directions. In this invention, an airfoil structure is directly attached to the turbine, allowing it to most efficiently interact with the wind regardless of its direction. Rather than attempting to mix air, this invention moves the lower speed air below the downstream turbine, displacing it with higher speed air from above. By eliminating the wake effects, this invention has the potential to improve wind farm efficiency by 15-20% and to allow for closer turbine spacing, both major drivers of cost. The invention also has beneficial applications in offshore wind, as the uplift force on the turbine from the airfoil provides much needed stabilization.
|
|
Economical Buffer Layer Boosts Performance of Organic Solar Cells
New compositions of matter have been invented, specifically organic buffer layer materials that can greatly enhance power conversion efficiency (PCE) of organic photovoltaic (OPV) devices and can effectively functionalize metal electrodes. Conventional-architecture OPV devices made using the new buffer layer have average PCEs greater than 8%, with the highest PCE value exceeding 9.5%. This new buffer layer can be used with Ag, Cu, and Au cathodes, opening routes to all-solution-based device fabrication and roll-to-roll processing. In addition, the new buffer layer materials can be applied at a layer thickness of up to 55 nm, avoiding processing challenges that occur with ultrathin buffer layers and enabling a simplified and reproducible process for device fabrication.
|
|
Thermoelectric Facades
Buildings consume 40% of energy in the United States, and influence greenhouse gas emissions. Given the high energy usage and inefficiencies found in conventional HVAC systems, new heating and cooling sources are needed to reduce buildings’ carbon footprint. Moreover, integration of different building systems, particularly building envelope and HVAC, are essential for high-performance buildings. Here, the inventors have conceived and demonstrated the thermoelectric facade, a novel facade system that integrates active and conventional thermoelectric (TE) modules for cooling, heating and energy generation. TE modules generate heat or cooling when electricity is applied, exploiting the Peltier effect, and produce a voltage when exposed to a temperature gradient, utilizing the Seebeck effect. Coupled with heat sinks, conductive materials and an electronic controller, the TE modules are employed in the facade system to heat or cool interior spaces of buildings, providing highly efficient and localized thermal management without requiring ducting, piping, or other large installations commonly associated with forced-air systems. In addition, thermoelectric facades can take advantage of temperature differences between interior and exterior to generate electricity at those times when active heating or cooling is not in use. This novel, intelligent facade system can be integrated into various facade types, regardless of the building function. Its modularity allows for easy installation into façade assemblies of the existing buildings, increasing the overall energy performance of the building. Additionally, they can be used in the design and construction of new buildings with various types of building envelope, including curtain walls, rainscreen facades with aluminum cladding, opaque facades with window and vertical shading, and/or opaque facades with window and horizontal shading.
|
|
High-Yield High-Quality Graphene by exfoliation of graphite
Graphene sheets are prized for their unusual but exciting properties, including extremely high mechanical strength and ability to efficiently conduct heat and electricity. These properties open up a myriad of applications in medicine, electronics, energy, and sensors. However, the production of graphene, which is derived from the exfoliation of graphite, is currently challenged by low efficiency and long exfoliation times. This invention uniquely combines two techniques, flow and sonication, to overcome these challenges. A graphite suspension is first subjected to a flow process, where it is mixed with zirconium oxide pebbles. Collisions between the graphite and the pebbles modify the graphite’s surface, making it easier for the solvent molecules to “wedge” in between layers during subsequent sonication, significantly increasing graphene exfoliation time-efficiency.
|
|
Novel Hydrophilic Conjugated Polymers as Efficient Hole Extraction Layers for Solar Cell Applications
This invention provides novel hydrophilic conjugated polymers that can be used as hole extraction layers in solar cells to enhance power conversion efficiency and solar cell stability. The polymers can be synthesized in water at room temperatures without using toxic transition metals or flammable organic solvents.
|
|
Genetic Engineering of a Microbial Chassis for Electrosynthesis and Electrofermentation
With rapidly increasing proliferation and declining costs of renewable energy generation, methods of storing excess electricity become increasingly important. One such method was previously patented by Dr. Derek Lovley and Dr. Kelly Nevin. In their patented method, microorganisms use electricity to convert water and carbon dioxide into multi-carbon chemicals and fuels, akin to the reverse operation of a microbial fuel cell. This invention builds upon the inventors’ patent. Here, they created a genetically-modified strain of Geobacter sulfurreducens, whose electrical current consumption rate is more than 10x higher than the wild-type strain, greatly enhancing the conversion process. This new strain also provides a platform for producing a wide variety of high-value carbonaceous products previously not possible through this method.
|
|
Method for Reducing Sludge Wasting and Enhancing Bio-hydrogen Generation from the Activated Sludge Process
Treatment and disposal of bio-hazardous sludge accounts for 50-60% of the operational costs at a wastewater treatment plant. To treat this sludge, it undergoes a process involving thickening, conditioning, and dewatering, followed by transport to a landfill or incinerator. In addition to high costs, landfilling and incineration are detrimental from a sustainability standpoint. In this patented invention, a closed, anaerobic, completely stirred tank side stream reactor is added after the outlet of the settling tank at the wastewater treatment plant. Solids retention time in the reactor is short (< 4 days), keeping its size and cost down. The acidic and anaerobic environment of the reactor causes biomass to deflocculate and sludge to hydrolyze, ultimately reducing sludge by 60%. The invention also has the added benefit of producing hydrogen and methane fuel.
|
|
Production of Specialty Chemicals with Carbon Dioxide Serving as the Carbon Source
Concerns of resource supply and climate change motivate the shift away from fuels and chemicals derived from fossil fuels towards domestic, sustainable production. The inventors’ patented technology presents a new way of doing this, using microorganisms that are able to take in CO2, water, and electricity and synthesize carbonaceous fuels and chemicals, akin to a reverse microbial fuel cell. In “microbial electrosynthesis,” a term coined by the inventors, an anode and cathode are connected to a source of electrical power and separated by a permeable membrane. Electron-accepting microorganisms are coated on a cathode, where they reduce CO2 to multi-carbon products, while water is oxidized to oxygen at the anode. For example, the production of acetate would proceed as follows: Anode: 4H2O --> 8H+ + 8e- + 2O2 Cathode: 2CO2 + 8H+ + 8e- --> CH3COOH + 2H2O Overall: 2CO2 + 2H2O --> CH3COOH + 2O2 In addition to acetate, production of ethanol, butanol, propanol, formate, and 2-oxobutyrate have been demonstrated.
|
|
Facile synthesis of tin-containing zeolites
Heteroatom containing zeolite catalysts have shown excellent catalytic activity and thermal stability in petrochemical processes as well as for converting biomass into biofuels and high-value chemicals. However, their synthesis is difficult, requiring harsh chemicals and long synthesis times. This patented technology is several rapid, high-yield synthesis methods for heteroatom containing zeolites, such as Sn-Beta. The method begins with adding zeolite seeds to a solution comprising a heteroatom source and a structure-directing agent. By directly adding the seeds to the solution without calcination or drying, the seeds do not agglomerate and as a result, crystallization time is shortened. To complete catalyst synthesis from the resulting gel, it is then heated to form a solid, filtered, washed, dried, and finally calcined. Specific methods disclosed in this patent include one as short as 2 days and the first fluorine-free synthesis route. The catalysts were demonstrated to be active for both sugar isomerization and dehydration reactions, necessary in fuel and chemical synthesis.
|
|
Polymeric Interlayer Boosts Performance of Organic Solar Cells
This invention provides new polymeric interlayer materials that can greatly enhance the power conversion efficiency (PCE) of organic or polymer solar cells.
|
|