University of Massachusetts Amherst

Search Google Appliance

Search Results - todd emrick

14 Results Sort By:
Pressure Sensitive Adhesives
Pressure sensitive adhesives bond two materials when physical pressure is applied to marry the adhesive with the adherent. They are widely applied in self-adhesive tapes, labels and marking films, medical plasters and pads, dermal pharmaceutical dosage forms, medical drapes and biomedical electrodes. Curing current adhesives often involves UV irradiation or heat, capital and energy intensive steps which may produce to toxic byproducts.

 

The invention concerns novel compositions and crosslinking strategies that greatly simplify fabrication of pressure sensitive adhesives.  A soluble and flowable polymer containing latent crosslinking sites is applied to a substrate as a low-viscosity solution or melt.  After application, spontaneous crosslinking occurs at ambient conditions, eliminating the need for post-crosslinking equipment, capital and expense. It also eliminates formation of undesired or toxic residues; allows the formation of crosslinked adhesive layers on temperature-sensitive substrates; enables the use of opaque crosslinkable adhesive formulations; and facilitates the incorporation of adhesives into porous or complex substrates. These strategies may be generalized to broader classes of solvent borne and hot melt pressure adhesives.

 

Published: 8/14/2017   |   Inventor(s): Shelly Peyton, John Klier, Yen Tran, Todd Emrick
Category(s): Engineering, Healthcare, Material science
Fulleropyrrolidine Interlayers for High Efficiency Perovskite Solar Cells
Interface engineering is critical for achieving efficient solar cells.  This invention provides a significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells from 7.50% to 15.48% by inserting a fulleropyrrolidine interlayer between the metal electrode and the electron transport layer. The interlayer enhances recombination resistance, increases electron extraction rate and prolongs free carrier lifetime.cells.
Published: 8/11/2017   |   Inventor(s): Thomas Russell, Todd Emrick, Yao Liu, Zachariah Page
Category(s): Devices, Physical Science, Material science, Clean Energy
Flame Retardant Monomers and Polymers
This invention provides new flame retardant monomers and polymers made using such and other monomers. The new flame retardant monomers can reduce polymer flammability due to char formation. Upon the incorporation of such monomers into the polymer structure, their additional functional groups or handles impart reactivity to the polymer, enabling the formation of new functional polymeric and composite materials.
Published: 9/14/2016   |   Inventor(s): Todd Emrick, Aabid Mir, Umesh Choudhary
Category(s): Chemicals, Material science, Physical Science
Deoxybenzoin-based Anti-flammable Polyphosphonate and Poly(arylate-phosphonate) Copolymer Compounds
Synthetic polymers are used extensively as plastics, rubbers, foams, textiles, and construction materials; however, the flammability of many polymers is recognized as a safety hazard and an important challenge in polymer research. To reduce polymer flammability, halogenated small molecule flame-retardant additives are commonly incorporated into polymer materials. However, such halogenated additives may compromise polymer properties, and moreover pose environmental problems associated with additive leaching. To overcome these problems, researchers at UMass Amherst have developed halogen-free, inherently flame-retardant polymers. This invention provides deoxybenzoin-based anti-flammable polyphosphonate and poly(acylate-phophonate copolymer compounds with low heat release capacity values and high char yields.
Published: 6/19/2015   |   Inventor(s): Todd Emrick, T. Ranganathan, E. Bryan Coughlin, Richard Farris, Joseph Zilberman
Category(s): Chemicals, Environmental, Material science, Physical Science
Anti-flammable Compounds and Adhesive Materials
This invention provides new chemical compositions and methods for the preparation of adhesive materials that have low flammability. The low flammability is due to newly invented organic/polymeric components used in the adhesive formulation, rather than through the addition of a conventional anti-flammable additives such as halogenated organic molecules or phosphorous-containing structures.
Published: 6/17/2015   |   Inventor(s): Todd Emrick, Justin Timmons, Megan Szyndler
Category(s): Chemicals, Environmental, Material science, Physical Science
Stablizing Liquid Drops ofof Arbitrary Shapes by the Interfacial Jamming of Nanoparticles
[%SearchResultsTechnologyDescription%]
Published: 6/16/2015   |   Inventor(s): Thomas Russell, Todd Emrick, Mengmeng Cui
Category(s): Material science, Nanotechnology, Engineering, Physical Science
Polymeric Interlayer Boosts Performance of Organic Solar Cells
This invention provides new polymeric interlayer materials that can greatly enhance the power conversion efficiency (PCE) of organic or polymer solar cells.
Published: 4/28/2015   |   Inventor(s): Todd Emrick, Thomas Russell, Zachariah Page, Yao Liu
Category(s): Material science, Physical Science, Clean Energy
Economical Buffer Layer Boosts Performance of Organic Solar Cells
New compositions of matter have been invented, specifically organic buffer layer materials that can greatly enhance power conversion efficiency (PCE) of organic photovoltaic (OPV) devices and can effectively functionalize metal electrodes. Conventional-architecture OPV devices made using the new buffer layer have average PCEs greater than 8%, with the highest PCE value exceeding 9.5%. This new buffer layer can be used with Ag, Cu, and Au cathodes, opening routes to all-solution-based device fabrication and roll-to-roll processing. In addition, the new buffer layer materials can be applied at a layer thickness of up to 55 nm, avoiding processing challenges that occur with ultrathin buffer layers and enabling a simplified and reproducible process for device fabrication.
Published: 12/1/2014   |   Inventor(s): Todd Emrick, Thomas Russell, Zachariah Page, Yao Liu
Category(s): Physical Science, Material science, Clean Energy, Devices
Novel Graft Copolymers as Anti-fouling Membrane Coating Materials
When commercially available polymer membranes are exposed to aqueous solutions of salt, emulsified oil droplets, and other particulate matter, their lifetime can decrease catastrophically due to reduction in flux as a result of membrane fouling. This technology provides a new class of graft copolymers capable of extending the lifespan and functionality of water purification membranes. As a membrane coating material, the graft copolymers have excellent hydrophilicity and anti-fouling properties. In addition, they contain UV-activatable functional groups to enable UV-crosslinking of the copolymers, both within the coating itself to impart structural stability and into the underlying membrane to promote strong adhesion. These graft copolymer coatings are highly effective in preventing fouling of water-filtration membranes, and in maintaining the flux levels necessary for efficient filtration. Unlike other coating materials, the anti-fouling graft copolymers do not delaminate from the membrane substrate.
Published: 12/1/2014   |   Inventor(s): Kurt Breitenkamp, Todd Emrick, Benny Freeman, Bryan McCloskey, Ravindra Revanur
Category(s): Physical Science, Material science
Amphiphilic Polymer Capsules and Related Methods of Interfacial Assembly
A chemical crosslinking process is used to prepare capsules from PEGylated polyolefins using either oil-in-water (i.e., oil inside the capsule in a water-based system), or water-in-oil system. The covalent network structure of these capsules make them more robust than many other systems under investigation in controlled-release.The unique nature of the crosslinking chemistry is such that the crosslinks can be made either hydrolytically stable or unstable. Those with hydrolytically stable crosslinks have longer carrier lifetimes, while those with hydrolytically unstable crosslinks will degrade over a time period that can be controlled by crosslink density and the type of crosslinker used.
Published: 12/1/2014   |   Inventor(s): Kurt Breitenkamp, Todd Emrick
Category(s): Material science, Therapeutics & prevention, Biotechnology
1 2