University of Massachusetts Amherst

Search Google Appliance

Search Results - gregory tew

4 Results Sort By:
Rapid, Sensitive and Selective Sensors for Ionic Mercury
The ability to rapidly and selectively detect and quantify chemicals has profound implications for human and environmental health. As poisonous chemicals, such as mercury (from solid-waste incineration and fossil-fuel combustion), continue to contaminate land and/or water, the development of portable, convenient “in the field” chemosensors becomes critically important. This invention provides novel colorimetric sensors for rapid, sensitive and selective detection of ionic mercury (Hg2+). The detection can be implemented using paper strip, dipstick or solution based sensors that are easy and inexpensive to manufacture and convenient to use for “in the field” measurements.
Published: 6/25/2015   |   Inventor(s): Raja Shunmugam, Gregory Tew
Category(s): Chemicals, Devices & sensors
Highly Resilient Synthetic Hydrogels with Tunable Mechanical Properties
This technology, developed by a team of polymer scientists at the University of Massachusetts Amherst, provides a versatile and simple method for producing highly resilient synthetic hydrogels with excellent mechanical properties comparable to the most efficient, naturally occurring elastic protein called resilin. The method involves the use of photo-initiated crosslinking reaction of hydrophilic and hydrophobic polymers having reactive end-groups in the presence of a tetra-functional thiol cross-linker. The resultant resilient hydrogels possess network elements of resilin, including a uniform network structure, low crosslink density, and an absence of secondary structures within the crosslinked primary chains. These hydrogels are capable of undergoing significant reversible deformation without energy loss (?97% resilience) at varying water content and show negligible hysteresis across a broad range of strains up to 300%. The swelling capacity, stiffness and fracture toughness of the hydrogels can be easily tuned by controlling the volume fractions of the hydrophilic and hydrophobic polymers to tailor the hydrogels to the specific needs of end-use applications. Current studies have focused on material elements common in extended wear contact lenses.
Published: 12/1/2014   |   Inventor(s): Gregory Tew, Melissa Lackey, Jun Cui, Catherine Walker, Alfred Crosby
Category(s): Material science, Healthcare
SYNTHETIC MIMICS OF CELL PENETRATING PEPTIDES FOR PHARMACEUTICAL DELIVERY AND DISEASE DIAGNOSIS
A team of innovative polymer scientists lead by Dr. Gregory N. Tew at University of Massachusetts Amherst has designed and developed a new class of synthetic polymers, called protein transduction domain mimics (PTDMs), for applications in pharmaceutical delivery and disease diagnosis. These novel polymers are synthetic mimics of protein transduction domains (PTDs), and are designed to mimic and improve the biological activity of PTDs. They can be readily synthesized and transport across lipid bilayers with efficiencies significantly better than their natural peptide analogs. Their rich chemical diversity and structural tunability allow for highly efficient delivery of many different cargos, such as DNA, siRNA and proteins, into a variety of cells.
Published: 5/13/2013   |   Inventor(s): Gregory Tew, Gregory Gabriel, Abhigyan Som, Arife Ozgul Tezgel
Category(s): Diagnostic technology, Healthcare, Biotechnology, Therapeutics & prevention, Life Sciences, Research tools
USING RING OPENING METATHESIS POLYMERIZATION (ROMP) TO GENERATE WATER-SOLUBLE POLYMERS
Water-soluble polymers have traditionally been synthesized via free radical polymerization methods. This technology provides a facile synthesis route to water-soluble polymers by leveraging Ring Opening Metathesis Polymerization (ROMP). This novel approach allows for the use of a plurality of newly designed, norbonene-based water-soluble monomers and provides a whole new class of polymeric materials with tremendous commercial potential spanning from superabsorbent materials to contact lenses to new scaffolds for regenerative medicine.
Published: 5/13/2013   |   Inventor(s): Sterling Alfred, Semra Colak, Paralee King, Ahmad Madkour, Gregory Tew
Category(s): Healthcare, Material science, Environmental