Demineralized Bone Paper and Applications Thereof
This invention provides structurally well-defined, three-dimensional bone tissue grafts produced from stacked demineralized bone paper (DBP), methods for treating a subject using such bone tissue grafts, methods for making DBP, and in vitro assay systems and methods for assaying the effect of an agent on bone development or health.
|
|
An Ex Vivo Method of Generating Super Regulatory T Cells as a Cell-based Therapy for the Prevention of Graft-vs-Host Disease
Regulatory T cells maintain immunological tolerance and dampen inflammatory responses. Administering regulatory T cells can prevent the immune-mediated tissue destruction of graft-versus-host disease, which frequently accompanies hematopoietic stem cell transfer. This technology provides a simple and effective method to generate and expand a unique population of stable and highly suppressive regulatory T cells, which can be used as a cell-based therapy for the prevention of graft-versus-host disease.
|
|
Let-7 promotes superior anti-tumor activity of CD8 T cells and memory formation
This invention demonstrates that let-7 miRNA regulates T cell responses and offers a strategy in developing next-generation immunotherapies by preserving the multipotency of effector cells rather than enhancing the efficacy of differentiation.
|
|
Localization of Payload Delivery Systems to Tumor Sites via Beacon Cell Targeting
[%SearchResultsTechnologyDescription%]
|
|
Noncationic Nucleic Acid-Polymer Complexes for Nucleic Acid Delivery
This invention provides a new strategy for nucleic acid delivery by using novel cross-linkable and surface-charge modifiable synthetic polymers. The use of the novel polymer system allows for robust nuclecid-polymer complexation, easy removal of cationic moieties of the polymer and self-crosslinking of the polymer in a single step, and stimuli-responsive release of the nucleic acid molecules in the cell.
|
|
Polymeric Nanoparticle-Based Antibiofilm Therapy
This invention provides a novel therapeutic platform to combat multidrug-resistant bacterial and biofilm infections using engineered polymeric nanoparticles. The polymeric nanoparticles can penetrate and eradicate pre-formed bacterial biofilms while maintaining high therapeutic indices. The nanoparticles are formed via self-assembly of engineered synthetic polymers in aqueous solutions, without the need to use any organic solvent or purification procedures.
|
|
Nanoparticle-Stabilized Microcapsules for Effective Treatment of Bacterial Biofilms
Bacterial biofilms are widely associated with persistent infections. The amphiphilic construct of biofilms provides protection for bacterial cells by reducing absorption of conventional antimicrobials. This invention provides new nanoparticle-stabilized antimicrobial microcapsules that can effectively inhibit and eradicate pathogenic biofilms. The microcapsules contain antimicrobial essential oil materials and can efficiently deliver such materials to the cells of pathogenic bacteria in the biofilm, resulting in effective killing of the bacteria.
|
|
Polymeric Nanocapsules for the Treatment of Biofilms
Bacterial biofilms are widely associated with persistent infections. The amphiphilic construct of biofilms provides protection for bacterial cells by reducing absorption of conventional antimicrobials. This invention provides new antimicrobial nanocapsules that can effectively inhibit and eradiate pathogenic biofilms. The nanocapsules contain an antimicrobial essential oil and can efficiently deliver the essential oil to the cells of pathogenic bacteria in the biofilm, resulting in effective killing of the bacteria.
|
|
Efficient Cytosolic Delivery of siRNA Using Nanoparticle-Stabilized Nanocapsules
This invention provides a general and efficient protein delivery platform that enables intracellular delivery of proteins having different physiochemical properties. The delivery system involves the use of surface functionalized nanoparticles to form self-assembled superstructures with the protein to be delivered. The nanoparticle-protein assemblies effectively escape endosomal entrapment and rapidly deliver the protein into the cell cytosol or the targeting organelle. This protein delivery system has been successfully demonstrated for the efficient delivery of the CRISPR/Cas9 gene editing system as well as a number of other proteins with different physiochemical properties.
|
|
Bacterial Polysaccharides for Inflammatory Disease
Inflammation is a healthy biological response which serves to remove harmful irritants and promote healing. However, abnormal inflammation may lead to pain, suffering, and disease, including digestive disease and autoimmune disease (e.g. multiple sclerosis). Exopolysaccharides (EPS) are polymers made up of sugars residues and are secreted by bacteria. The present invention involves administration of bacterial EPS to prevent and protect against inflammatory disease. Using animal models, the inventors have found that administration of Bacillus subtilis EPS formulations prevent intestinal inflammation. In addition, these formulations prevent development of a multiple sclerosis-like disease in mice. Thus, Bacillus subtilis EPS could be used as a therapeutic or serve as a prophylactic for inflammatory disorders, and thereby improve the quality of life for individuals with these diseases.
|
|