University of Massachusetts Amherst

Search Google Appliance

Search Results - qiangfei xia

4 Results Sort By:
Diffusive Memristor as a Synapse
Neuromorphic computing, systems designed to mimic the biological nervous system, require far less power than current computer processors. The increased efficiency makes feasible artificial intelligence applications for smaller, hand-held devices (e.g. smartphones, tablets).  To this end, UMass inventors have designed hardware components that mimic neuronal synapses (Figure A). Specifically, diffusive Ag-in-oxide memristors show a temporal response during and after stimulation similar to that of a biological synapse. The novel diffusive memristor and its synapse-like dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses and represent a major advancement in a hardware implementation for neuromorphic computing.
Published: 10/27/2017   |   Inventor(s): Jianhua (joshua) Yang, Qiangfei Xia, Mark Mclean, Qing Wu, Mark Barnell
Category(s): Devices, Engineering, Physical Science, Communications & internet, Computers
Method OF Transfer Printing
2-dimensional (2D) materials are characterized as being one or two atoms thick. Graphene (image above) is by far the best known 2D material. However, there are many other 2D materials with attractive properties (e.g. hexagonal boron nitrides (hBN), transition metal dichalcogenides, etc.). Due to their superior physical properties, graphene and related 2D materials have the potential to revolutionize many industries, enable development of new devices, and provide new functionalities to existing technologies. In short, these materials have the potential to be disruptive and pervasive. Despite their overwhelming promise, however, industrial scale manufacture of these materials is not yet a reality, due in part to an inability to control layer number and to print over large surface areas.


To address this problem, scientists at UMass Amherst have engineered a high-precision printing method that is compatible with current industrial manufacturing processes. This simple method allows single layer 2D material to be patterned, transferred and printed onto a substrate, enabling the fabrication of novel 2D heterostructures devices. Thus, this method will facilitate the assembly of novel devices and enable large-scale manufacture of devices with designed properties.

Published: 8/10/2017   |   Inventor(s): Qiangfei Xia, Peng Lin
Category(s): Material science, Nanotechnology
Memristive devices are characterized by their present resistance being dependent on the current that last passed through them.  In this invention, a memristive RF switch is created by having two micro-electrodes with a small air gap, e.g., 50nm or less, between them.  When in the “off” state, the air gap between the electrodes gives the device a very high resistance.  When a “setting voltage” is applied between the electrodes, a conductive filament is self-created from one electrode, which bridges the air gap and contacts the other electrode.  The device in now the “on” state, and resistance is very low.  To turn the device off again, a “resetting voltage” having opposite polarity is applied, and the conductive filament’s connection to the other electrode is broken.

Published: 6/8/2015   |   Inventor(s): Qiangfei Xia, Joseph Bardin, Shuang Pi
Category(s): Electronics, Communications & internet, Devices & sensors, Computers
All Silicon Based Memristive Devices and Arrays
A new low power resistance random access memory (RRAM) device based on silicon materials has been invented. RRAM devices are non-volatile memory devicesas well as promising candidates to replace FLASH memory and become the front runner among non-volatile memories. Instead of charge storage, RRAM uses high and low resistance as state variables. RRAM devices are attractive due to their fast switch speed, overwrite ability without erase, low power consumption, high endurance and long retention times. However, RRAM devices with low programming voltages and excellent device-to-device performance repeatability are still yet to be implemented. The current invention addresses these issues. Moreover, unlike other RRAM devices currently under development, these devices use only silicon-based materials making them compatible with CMOS technology. Altogether, these improvements make this new RRAM device an attractive option for commercial development.
Published: 1/29/2015   |   Inventor(s): Qiangfei Xia
Category(s): Electronics, Devices, Communications & internet, Computers