The University of Massachusetts Amherst

Search Results - Physical+Science

37 Results Sort By:
Ultra-high Strength Multilayer Graphene Materials
This invention relates to the use of single crystalline graphene to create multilayer structures of graphene materials with superior shear strength.
Published: 3/7/2023   |   Inventor(s): Christos Dimitrakopoulos, Dimitrios Maroudas, Andre Muniz, D. Kurt Gaskill
Category(s): Material science, Nanotechnology, Electronics, Engineering, Physical Science
Diffusive Memristor as a Synapse
Neuromorphic computing, systems designed to mimic the biological nervous system, require far less power than current computer processors. The increased efficiency makes feasible artificial intelligence applications for smaller, hand-held devices (e.g. smartphones, tablets).  To this end, UMass inventors have designed hardware components that mimic neuronal synapses (Figure A). Specifically, diffusive Ag-in-oxide memristors show a temporal response during and after stimulation similar to that of a biological synapse. The novel diffusive memristor and its synapse-like dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses and represent a major advancement in a hardware implementation for neuromorphic computing.
Published: 12/21/2022   |   Inventor(s): Jianhua (joshua) Yang, Qiangfei Xia, Mark McLean, Qing Wu, Mark Barnell
Category(s): Devices, Engineering, Physical Science, Communications & internet, Computers
Method for Rapid Preparation of Graphene Films under Ambient Conditions and Applications Thereof
This invention provides a novel method for the formation of graphene films, high-quality graphene films made thereby, and applications thereof.
Published: 3/7/2023   |   Inventor(s): James Watkins, Uzodinma Okoroanyanwu, Ayush Bhardwaj
Category(s): Engineering, Material science, Physical Science
Rapid Neural Network-based Autofocus Control for High-precision Imaging Systems

As industry 4.0 pushes the limits of micro and nano-scale technologies, semiconductor, GPU, and robotics manufacturers are searching for ways to optimize their production lines while still maintaining the highest level of quality. Visual inspection of these advanced micro and nano-scale technologies requires remarkably high levels of precision and control. The piezoelectric actuators used for metrology are currently burdened by non-linearities that require slow and expensive internal closed-loop controllers to deliver sufficient precision to the imaging system. A UMass Amherst research team has developed a new control method that reduces the cost and complexity of high-precision imaging systems while still delivering rapid acquisition of clear and crisp images. The new method integrates the focus measurement and the troublesome non-linear effects in a single learning-based model. The method involves evaluating the focus from a short sequence of images in a deep learning-based control model to determine the optimal position for the lens. The technology leverages Long Short-Term Memory (LSTM) because of its superior ability to draw inferences from learned time sequence data. This novel method also utilizes an optimized backpropagation algorithm for efficiency, as well as a unique S-curve control input profile to minimize motor and image jerks. This method supports both rapid and stable dynamic lens transitions for a wide variety of imaging applications. Compared with the leading autofocus technologies, this method demonstrates significant advantages regarding autofocus time.  

Published: 11/2/2022   |   Inventor(s): Xian Du, Peter DiMeo, Jingyang Yan
Category(s): Engineering, Physical Science, Software & information technology
Plush Toys with Arrays of Textile-based Sensors for Interaction Detection
This invention provides a nature-inspired, multilayer photothermal textile and personal heated wearables, such as clothing, comprising such textile for highly efficient thermoregulation and personal thermal management.
Published: 2/17/2023   |   Inventor(s): Ali Kiaghadi, Jin Huang, Seyedeh Zohreh Homayounfar, Deepak Ganesan, Trisha Andrew
Category(s): Physical Science, Software & information technology, Engineering, Devices & sensors
Multilayer Photothermal Textile and Wearable for Thermoregulation
This invention provides a nature-inspired, multilayer photothermal textile and personal heated wearables, such as clothing, comprising such textile for highly efficient thermoregulation and personal thermal management.
Published: 2/6/2023   |   Inventor(s): Trisha Andrew, Wesley Viola
Category(s): Engineering, Material science, Physical Science
Electrically-heated Fiber, Fabric, or Textile for Heated Apparel
This invention provides a process to transform commercial textiles and threads into lightweight fabric heaters for local climate control and personal thermal management, and electrically-heated fiber, fabric, or textile that can be incorporated into a variety of garments.
Published: 3/16/2023   |   Inventor(s): Trisha Andrew, Lushuai Zhang, Morgan Baima
Category(s): Devices, Engineering, Material science, Physical Science
Polymer-coated Supercapacitors
This invention provides polymer-coated supercapacitors for energy storage applications.
Published: 3/7/2023   |   Inventor(s): Trisha Andrew, Lushuai Zhang
Category(s): Devices, Material science, Physical Science, Engineering
Deoxybenzoin-based Anti-flammable Polymers and Cured Epoxy Resins
This invention provides novel, deoxybenzoin-based anti-flammable polymers and cured epoxy resins for a variety of end-use applications.
Published: 3/7/2023   |   Inventor(s): Todd Emrick, E. Bryan Coughlin, Bon-Cheol Ku, Thangamani Ranganathan, Michael Beaulieu, Richard Farris
Category(s): Chemicals, Environmental, Material science, Physical Science
Novel Zwitterionic Materials
This invention provides novel ammonium and sulfonium sulfonate zwitterions and polymers derived therefrom for a variety of end-use applications.
Published: 3/7/2023   |   Inventor(s): Marcel Brown, Todd Emrick
Category(s): Chemicals, Material science, Physical Science
1 2 3 4