The University of Massachusetts Amherst

Search Results - duncan%2520irschick

5 Results Sort By:
Rapid Neural Network-based Autofocus Control for High-precision Imaging Systems

As industry 4.0 pushes the limits of micro and nano-scale technologies, semiconductor, GPU, and robotics manufacturers are searching for ways to optimize their production lines while still maintaining the highest level of quality. Visual inspection of these advanced micro and nano-scale technologies requires remarkably high levels of precision and control. The piezoelectric actuators used for metrology are currently burdened by non-linearities that require slow and expensive internal closed-loop controllers to deliver sufficient precision to the imaging system. A UMass Amherst research team has developed a new control method that reduces the cost and complexity of high-precision imaging systems while still delivering rapid acquisition of clear and crisp images. The new method integrates the focus measurement and the troublesome non-linear effects in a single learning-based model. The method involves evaluating the focus from a short sequence of images in a deep learning-based control model to determine the optimal position for the lens. The technology leverages Long Short-Term Memory (LSTM) because of its superior ability to draw inferences from learned time sequence data. This novel method also utilizes an optimized backpropagation algorithm for efficiency, as well as a unique S-curve control input profile to minimize motor and image jerks. This method supports both rapid and stable dynamic lens transitions for a wide variety of imaging applications. Compared with the leading autofocus technologies, this method demonstrates significant advantages regarding autofocus time.  

Published: 11/2/2022   |   Inventor(s): Xian Du, Peter DiMeo, Jingyang Yan
Category(s): Engineering, Physical Science, Software & information technology
More efficient, low energy manufacturing method for 2D Zeolites
Zeolites have found wide application in catalysis and separation processes due to their tunable pore structure and active sites, and they show remarkable stability in commercial use. Recently, ultra-thin two-dimensional (2D) zeolite nanosheets have been synthesized from zeolite precursors. These ultra-thin nanosheets show promise for high throughput separations and catalytic reactions involving bulky molecules. A commercially feasible synthesis method, however, has yet to be developed. State-of-the-art methods require high energy input and multiple processing steps, and give low yield and small nanosheet size.

 

Professors Winter and Fan have developed a simpler, lower energy method to synthesize ultra-thin 2D zeolite nanosheets from precursor zeolite materials, such as MCM-22 and ml-MFI. In the method, zeolite precusors can be subjected to either a short sonication or chaotic flow treatment in the presence of commercially available telechelic polymers, resulting in exfoliated zeolite nanosheets. While demonstrated in batch, this process can potentially be scaled and made continuous.

Published: 6/26/2023   |   Inventor(s): H Winter, Wei Fan, Vijesh Tanna, Sanket Sabnis
Category(s): Chemicals, Engineering
Modular and Portable Multi-camera Photogrammetry System
This invention provides a hand-held, portable, and modular photogrammetry system that consists of multiple cameras attached to movable mounting arms coupled to a holdable plate. The system also includes a trigger mechanism that activates the cameras simultaneously.  The system enables rapid (15 - 45 seconds) capture of 2D images of objects for the creation of high-resolution 3D models.
Published: 8/3/2023   |   Inventor(s): Duncan Irschick, Kasey Smart, Dylan Briggs
Category(s): Devices, Engineering
Nanoparticle-Stabilized Microcapsules for Effective Treatment of Bacterial Biofilms
Bacterial biofilms are widely associated with persistent infections. The amphiphilic construct of biofilms provides protection for bacterial cells by reducing absorption of conventional antimicrobials. This invention provides new nanoparticle-stabilized antimicrobial microcapsules that can effectively inhibit and eradicate pathogenic biofilms. The microcapsules contain antimicrobial essential oil materials and can efficiently deliver such materials to the cells of pathogenic bacteria in the biofilm, resulting in effective killing of the bacteria.
Published: 8/10/2023   |   Inventor(s): Vincent Rotello, Bradley Duncan, Xiaoning A/k/a Sharlene Li
Category(s): Healthcare, Life Sciences, Nanotechnology, Therapeutics & prevention
Stable, Biocompatible and “Green” Protein Films for Antifouling, Antimicrobial and Tissue Engineering Applications
This invention provides protein films or coatings for antifouling, antimicrobial and tissue engineering applications, and scalable, environment-friendly methods for fabricating the films. The films are water-stable, biocompatible and resistant to protein and bacterial fouling, and can be made to direct human cell adhesion, alignment and growth. The films can be fabricated on both hard and flexible substrates, and the fabrication process does not involve the use of environmentally hazardous materials such as organic solvents or chemical crossslinkers. The biodegradability of the films can be tuned to enable controlled release of functional or therapeutic agents.
Published: 8/10/2023   |   Inventor(s): Vincent Rotello, Bradley Duncan, Li-Sheng Wang, Eunhee Jeoung, Chandramouleeswaran Subramani, Krishnendu Saha
Category(s): Biotechnology, Environmental, Engineering, Healthcare, Life Sciences