University of Massachusetts Amherst

Search Google Appliance

Search Results - Life Sciences

25 Results Sort By:
Method of Non-Chromatographic Purification of Monoclonal Antibodies
The potent pharmacodynamics and numerous diagnostics of monoclonal antibodies (mAbs) have led to their extensive use as therapeutic treatments for various cancers and autoimmune disorders, and for diagnostic assays. However, rapid developments in the foundational cell biology and recombinant technology of mAbs have not been matched by progress in downstream purification, a major determinant of mAb cost. 

 

mAb purification, largely reliant on chromatography (e.g. Protein A chromatography), is the principal determinant of drug cost. The present invention generally relates to non-chromatographic purification of mAbs, and particularly, to a method of purification of monoclonal antibodies via selective coacervation with hyaluronic acid. The method separates mAb from unwanted proteins and nucleic acids secreted from mAb-producing hybridoma cells, forming a fluid coacervate from which the mAb is purified. This promising technique may be an effective alternative for Protein A chromatography.

Published: 8/10/2017   |   Inventor(s): Paul Dubin, Rachel Wollacott, Daniel Seeman, Alex Malanowski
Category(s): Biotechnology, Healthcare, Life Sciences, Therapeutics & prevention
Inhibiting Proteases to Accelerate Wound Repair
This invention relates to the use of a protein therapeutic to block the activated and over-expressed proteases that lead to chronic wounds and thinning of the dermis in aging.
Published: 9/8/2016   |   Inventor(s): Annette Wysocki, Margaret Riley
Category(s): Healthcare, Life Sciences, Therapeutics & prevention
Displaying Physical Activity and Exercise Information
It is well appreciated that physical activity is beneficial for health and that long periods of sitting can be detrimental. Individuals use wearable activity trackers to inform themselves of salient data necessary for completion of activity goals (e.g. 10,000 steps per day). However, to date, devices do not provide movement information in context of overall activity patterns, rather they focus on only one metric of behavior. Thus, a user may not fully appreciate how much time they engaged in sedentary behaviors vs. active behaviors during a day or how much overall effort they used.

 

To address this problem, Dr. Tudor-Locke and her team have devised a simple, dynamic goal driven triangle graphic that display movement and non-movement data in an integrated fashion that can be displayed on wearable devices. Specifically, the arms of the triangle represent step number, effort, and sedentary time. As this information changes throughout the day based on behavior, the triangle will shift in both shape and size. This simple representation will allow the user to visualize their physical activity and exercise in the context of overall activity behavior. The use of simple, intuitive figures that provide individuals with integrated metrics of movement behavior may encourage individuals to make small tweaks in daily behavioral patterns, namely increasing the amount and intensity of physical activity and decreasing sedentary behavior, which could lead to significant health benefits.

Published: 2/25/2016   |   Inventor(s): Catrine Tudor-Locke, Michael Busa
Category(s): Electronics, Healthcare, Life Sciences, Software & information technology
Nanoparticle-Stabilized Microcapsules for Effective Treatment of Bacterial Biofilms
Bacterial biofilms are widely associated with persistent infections. The amphiphilic construct of biofilms provides protection for bacterial cells by reducing absorption of conventional antimicrobials. This invention provides new nanoparticle-stabilized antimicrobial microcapsules that can effectively inhibit and eradicate pathogenic biofilms. The microcapsules contain antimicrobial essential oil materials and can efficiently deliver such materials to the cells of pathogenic bacteria in the biofilm, resulting in effective killing of the bacteria.
Published: 10/5/2015   |   Inventor(s): Vincent Rotello, Bradley Duncan, Xiaoning a/k/a Sharlene Li
Category(s): Healthcare, Life Sciences, Nanotechnology, Therapeutics & prevention
Polymeric Nanocapsules for the Treatment of Biofilms
Bacterial biofilms are widely associated with persistent infections. The amphiphilic construct of biofilms provides protection for bacterial cells by reducing absorption of conventional antimicrobials. This invention provides new antimicrobial nanocapsules that can effectively inhibit and eradiate pathogenic biofilms. The nanocapsules contain an antimicrobial essential oil and can efficiently deliver the essential oil to the cells of pathogenic bacteria in the biofilm, resulting in effective killing of the bacteria.
Published: 9/14/2015   |   Inventor(s): Vincent Rotello, Ryan Landis, Akash Gupta, Yiwei Lee
Category(s): Biotechnology, Healthcare, Life Sciences, Nanotechnology, Therapeutics & prevention
Polymeric Nanocapsules for Efficient Intracellular Delivery of Theraputic Proteins
Designing protein therapeutics is becoming one of the fastest growing strategies to treat a variety of diseases including cancer and diabetes. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, a bacterially constructed protein-nucleic acid complex has shown great potential to reverse various genetic disorders. The delivery of this complex into the cell and finally the nucleus is challenging, however, due to the large size of the Cas9 protein. This invention provides a general and efficient protein delivery platform that enables the intracellular delivery of therapeutic proteins. The delivery system involves the use of novel synthetic polymers capable of forming nanocapsules spontaneously under controlled conditions.
Published: 6/22/2015   |   Inventor(s): Vincent Rotello, Ryan Landis, Moumita Ray
Category(s): Biotechnology, Life Sciences, Research tools, Healthcare, Therapeutics & prevention
Efficient Cytosolic Delivery of siRNA Using Nanoparticle-Stabilized Nanocapsules
This invention provides a general and efficient protein delivery platform that enables intracellular delivery of proteins having different physiochemical properties. The delivery system involves the use of surface functionalized nanoparticles to form self-assembled superstructures with the protein to be delivered. The nanoparticle-protein assemblies effectively escape endosomal entrapment and rapidly deliver the protein into the cell cytosol or the targeting organelle. This protein delivery system has been successfully demonstrated for the efficient delivery of the CRISPR/Cas9 gene editing system as well as a number of other proteins with different physiochemical properties.
Published: 6/19/2015   |   Inventor(s): Vincent Rotello, Ying Jiang, Rui Tang
Category(s): Biotechnology, Life Sciences, Healthcare, Research tools, Therapeutics & prevention
Stable, Biocompatible and “Green” Protein Films for Antifouling, Antimicrobial and Tissue Engineering Applications
This invention provides protein films or coatings for antifouling, antimicrobial and tissue engineering applications, and scalable, environment-friendly methods for fabricating the films. The films are water-stable, biocompatible and resistant to protein and bacterial fouling, and can be made to direct human cell adhesion, alignment and growth. The films can be fabricated on both hard and flexible substrates of any shape, and the fabrication process does not involve the use of environmentally hazardous materials such as organic solvents or chemical crossslinkers. The biodegradability of the films can be tuned to enable controlled release of functional or therapeutic agents.
Published: 6/19/2015   |   Inventor(s): Vincent Rotello, Bradley Duncan, Li-Sheng Wang, Eunhee Jeoung, Chandramouleeswaran Subramani, Krishnendu Saha
Category(s): Biotechnology, Environmental, Engineering, Healthcare, Life Sciences
NEW T7 RNA POLYMERASE MUTANTS WITH SIGNIFICANTLY REDUCED ABORTIVE PROFILES
RNA is increasingly used as both a research and therapeutic tool to control gene expression. T7 RNA polymerase is the primary enzyme used for in vitro RNA synthesis. One problem that exists in any transcription system is that many initial RNA sequences yield substantial amounts of short, abortive products that complicate both the yield and the purity of the desired in vitro transcript.

 

Researches at the University of Massachusetts Amherst have developed a new series of T7 RNA polymerase mutants based on mechanistic understandings of the polymerase function. These new mutant forms of T7 RNA polymerase dramatically reduces the yield of undesired (short, abortive) transcripts in transcription. This leads to a higher fraction of transcripts being the desired full-length RNA product.

Published: 6/8/2015   |   Inventor(s): Craig Martin, Luis Ramirez-Tapia
Category(s): Biotechnology, Research tools, Life Sciences, Healthcare
Economical Surface Treatment for Harvesting Epithelial Cells from Biological Fluids
This invention provides economical, bio-interactive surfaces and surface treatment methods for selective capture of targeted epithelial cells or other cell types from cell mixtures or complex biological fluids. Preparation or fabrication of the engineered surfaces provided by this technology does not require the use of expensive and unstable biomolecular materials, and the resulting surfaces can distinguish different cell types or cells that express different levels of the same surface adhesion marker. Such engineered surfaces can be used as economical tools for assessment of cancer risk, cancer diagnosis, and tracking of the effectiveness of cancer treatments, among other potential applications.
Published: 6/3/2015   |   Inventor(s): Maria Santore, Kathleen Arcaro, Surachate Kalasin
Category(s): Biotechnology, Nanotechnology, Diagnostic technology, Devices & sensors, Life Sciences, Healthcare, Research tools
1 2 3